Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo.
نویسندگان
چکیده
The intractability of malignant gliomas to multimodality treatments plays a large part in their extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel member of the tumor necrosis factor (TNF) family that induces apoptosis preferentially in tumor cells through binding to its cognate death receptors, DR4 and DR5. Here we show that the DNA-damaging chemotherapeutic drugs, cis-diamminedichloroplatinum(II) (CDDP) and etoposide, elicited increased expression of DR5 in human glioma cells. Exposure of such cells in vitro to soluble human TRAIL in combination with CDDP or etoposide resulted in synergistic cell death that could be blocked by soluble TRAIL-neutralizing DR5-Fc or the caspase inhibitors, Z-Asp-CH2-DCB and CrmA. Moreover, systemic in vivo administration of TRAIL with CDDP synergistically suppressed both tumor formation and growth of established s.c. human glioblastoma xenografts in nude mice by inducing apoptosis without causing significant general toxicity. The combination treatment resulted in complete and durable remission in 29% of mice with the established s.c. xenografts and also significantly extended the survival of mice bearing intracerebral xenografts. These results provide preclinical proof-of-principle for a novel therapeutic strategy in which the death ligand, TRAIL, is safely combined with conventional DNA-damaging chemotherapy.
منابع مشابه
Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo.
Tumor necrosis factor-related apoptosis-inducing-ligand (TRAIL/Apo-2 ligand) induces apoptosis in the majority of cancer cells without appreciable effect in normal cells. Here, we report the effects of TRAIL on apoptosis in several human breast cancer cell lines, primary memory epithelial cells, and immortalized nontransformed cell lines, and we examine whether chemotherapeutic agents augment T...
متن کاملAnticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new cytokine that was proposed to specifically induce apoptosis of cancer cells. In tumor cells that are resistant to the cytokine, subtoxic concentrations of chemotherapeutic drugs can restore the response to TRAIL. The present study further explores the mechanisms that determine tumor cell sensitivity to TRAIL by comparing f...
متن کاملEpidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with chemotherapeutic drugs induces a synergistic apoptotic response in cancer cells. TRAIL death receptors have also been implicated in chemotherapeutic drug-induced apoptosis. This has lead to TRAIL being proposed as a potential cancer treatment. In nude mice injected with human tumors, TRAIL reduces the size of th...
متن کاملSynergistic induction of apoptosis by mapatumumab and anthracyclines in human bladder cancer cells.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in a variety of tumor cells by engaging the death receptors 4 (DR4) and 5 (DR5). We investigated the effect of chemotherapeutic drugs on DR4-mediated apoptosis in human bladder cancer cells, using a human monoclonal agonistic antibody specific for DR4, mapatumumab. Cytotoxicity was determined by 3-(4,5-dimethylth...
متن کاملActivation and Apoptosis Caspase-8 Factor-related Apoptosis-inducing Ligand-mediated Anticancer Agents Sensitize Tumor Cells to Tumor Necrosis
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new cytokine that was proposed to specifically induce apoptosis of cancer cells. In tumor cells that are resistant to the cytokine, subtoxic concentrations of chemotherapeutic drugs can restore the response to TRAIL. The present study further explores the mechanisms that determine tumor cell sensitivity to TRAIL by comparing f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2000